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A review of articles on the study of turbulent streams having transverse displacement, in 
which a turbulent energy balance equation is used, is contained in [I]. Levin [2] proposed 

a certain development of Rotta's method [3] making it possible to determine the character- 
istics of the average flow and the radial distribution of pulsation magnitudes. However, in 
this article the scale of the turbulence (the quantity l) was given as an empirical function 
of the coordinates. At the same time it is clear that the distribution of the turbulence scale 
depends on the conditions of the problem. A special differential equation proposed in [4,5] 
describing the variation in time and space of the quantity l has the drawback that in deriv- 
ing this equation it is necessary to invoke additional hypotheses which are difficult to test 
experimentally. In the present article, along with the velocity of the average flow, the pres- 
sure, and the pulsation magnitudes, the scale of the turbulence is considered as an impor- 
tant characteristic of the stream, determined by the reference system which consists of the 
Reynolds equations, continuity equations, and equations for the component of the Reynolds 
stress tensor. Rotta's approximate semiempirical relations and an experimental relation 
for the single-point correlation coefficient between the turbulent pulsations in velocity are 
used for closure of the system obtained. An approximate calculation is given for the prin- 
cipal average and pulsation characteristics of the flow for the region of the stream where 
the turbulence is in a state of structural equilibrium [6]. A comparison of the calculated 
and experimental data is presented. 

For a broad range of flows having transverse displacement, including flow in a boundary layer at 
rough and smooth walls [7], streams in pipes and channels [8, 9], flow in a short-range wake, and jets 
[I0, II], a similarity can be observed between the distribution of turbulent stress and the distribution of 
the corresponding turbulence intensities. The linear relation between the turbulent stress of friction and 
the turbulent kinetic energy was used by Bradshaw [12] in calculating the friction in a boundary layer and 
by Lee and Harsha [13] in analyzing jet streams. An experimental confirmation of this hypothesis in a 
broad range of variation of the flow conditions is presented in [14]. It is indicated in [15] that in rotating 
streams the ratio of the turbulent stress to the corresponding components of the turbulence intensity is 
also constant in cross section and approximately equal to 0.4. 

If we introduce the correlation coefficient 

k~v = (uv )  / l~ (u  ~) (v  2) (1) 

then outside the viscous sublayer  and the axial zone this coefficient is constant  and equal to ~0.42 (the 
points 1 in Fig.  1 are plotted f rom the data of [7], points 2 f rom [8], 3 f rom [9], 4 f rom [10], and 5 f rom 
[II]). It must be noted that the experiments conducted in the case of uniform distortion of homogeneous 
turbulence [6] showed that the maximum possible value of this coefficient is also equal to 0.42 ([6], p. 377). 
The constancy of the correlation coefficient can serve as an indication that in this region the turbulence is 
in a state of structural equilibrium [6]. Townsend indicates that the establishment of an equilibrium struc- 
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Fig. 1 

ture can formal ly  be represented as the establ ishment  of some equilib- 
r ium between the orienting effect of the distortion on vort ices  and the 
general  tendency of turbulent flow to become isotropic.  

Taking advantage of this fact, let us examine as an example the ca l -  
culation of the principal charac te r i s t i cs  of turbulent s t r eams  in a 
cyl indrical  pipe and a flat channel. For  the components of the Reynolds 
s t r e s s  tensor  we have the following sys tem of equations in Cartesian co-  
ordinates [1] (in tensor  notation): 

0 <uiuj> 0 <uiuj> OU i OUj 
ot + U~ -57~ + <u~uj>--y~. + <u~u~> oz~. 

t {Ou{ Ou t , \  0 / p / a u  i Ouj\. =0  (2) 

where p is the pulsation p ressure  and 5ij is the Kronecker  symbol (i, j = 1, 2, 3). 

An analysis of experimental  data [8] shows that in the region of flow 0.3 < y / a  < 0.9, where the c o r -  
relation coefficient kuv is constant,  convective diffusion (due to turbulence) and viscous diffusion can be 
neglected. 

On the example of [2] we take the following express ion for the te rm expressing the exchange of energy 
between the three components of the pulsations: 

/ (ou~ + % 1 \ =  Ev~, 2 ) 
- ~ \ P  ~-~zj Oxi]/ --k-7--I(u#'J> - - - U  6~jE] (3) 

while for the dissipative t e rm we take the interpolation equation 

~ O u  i a u ~  <uiuj> 2 cE ~/~ 
\Ox~ Oz / --7--" 3 l 

2E~= ~, (ui2> 
{ 

(4) 

Here k, c, and c i are constant coefficients.  

The use of the dependence (4) in a par t icular  case of isotropic turbulence gives certain laws of de- 
generation (in the initial and final stages) of the energy of the turbulence. Actually, the sum of the f i rs t  
three equations of sys tem (2) gives a balance equation for the total pulsat ionenergy,  which in the case of 
isotropic turbulence and the application of Eq. (4) has the form 

aE E % E 
O t  -[- C"""T-- -[- ClV"~ - = 0  (5) 

The process  of degeneration of isotropic turbulence in the initial stage is determined for the most  
par t  by the decay of energy-containing vor t ices ;  in the final stage the effect of v iscos i ty  predominated over 
inert ial  effects .  It is shown in [16] that if the value (vt//2 is chosen as the charac te r i s t i c  length, then in 
the case of ve ry  small  Reynolds numbers (final stage of degeneration) the energetic spec t rum conserves  
s imi la r i ty .  This same charac te r i s t i c  length can also be chosen for the region of energy-containing 
vor t ices  since in this case the relation a ~ / v  = const is satisfied (e is the energy dissipation per unit 
mass) ([16], p. 245). Substituting the value 4-~ in place of l in Eq. (5) we obtain E = (v /c2) t  -1 for the ini- 
tial stage of the process  of degeneration of isotropic turbulence, while for the final stage we obtain E ~ t-c~. 
These simple laws of the degeneration of isotropic turbulence have repeatedly been noted by different in- 
vest igators  (see, for example [16]). According to the experiments  of Batchelor and Townsend [17] the con-  
stants c and c 1 have the values 0.155 and 2.5, respect ively .  

For  c losure  of sys tem (2) we draw on the equation of motion for the average flow which is uniform 
longitudinally: 

du, vV,~ ~, (V,Z = _ ~( d~  ~ ) <uv>- ~, d~ - 7  ' \ - ~ / ~ =  a (6) 

and substitute the turbulent friction according to Eq. (1). 
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In  d i m e n s i o n l e s s  f o r m  E q s .  (6) and  (2), t a k i n g  (3) and  (4) i n to  a c c o u n t ,  h a v e  the  f o r m  [2] 

k ,  V < - ~ S  V < - ~  
E Re~ + c ReE q- cl = 0, ~O'2) (k Re t+c l )  - -  + (k - -  c) R e ~ = 0  

<v~> ~ k,~,, I/-<--~-'> "1/-<--~-'> (k ReE -}- cl) = 0 ne~ + E 
<uw) <vw>.E Bet -[- ~ (k ROE -4- cl) : 0 

<vw> (k ReE + cI) = 0 
E 

( lz dU') 
Re E - ~ l l / ' E / v ,  Ret= "~ dy 

S o l v i n g  s y s t e m  (7) we f i n d  

OY 

<uw> = <vw> = 0 
(uv) = ( 1 - -  Re~'- 
V, 2 \ c ReEa + c, ReE2 + Rez2 ) + 

V<-~;-> V<-~S-> = ~[ 3 @ r t ~  2 (c - k) naE' ae? ],/, { y ,~,j, 
v----:-- = --Y:--. + c,) (c ae, .  + c~ he=2 a%~) ] \-~-/ 

Re I [ 
L 3 L:~ez+ + R,?)j \ - U /  V, ~ (k cl) s (c ReEa-~-ct ReE~ 

U , -  U.____.....~I : R%~ Re, f,~,~2 
V. 2 (c Re~ a q- ci ReEZ q- Rein) 

~ ' ~a~,~ ~ " 

ci (1 --  2k2uv ) 
Re ,  --  V,a ReE 

' 2kk~,  - -  ~ - -  4 (k - -  ~) ~o / 3 
[ 3 (r ReE q- cl) ] ' / '  

l:[e I = - -  (k ReE -[- Cl) 2 (k -- c) Re E 

(7) 

(8) 
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A compar i son  of the r e su l t s  of a calculat ion by Eq. (8) with expe r imen ta l  data  is p resen ted  in Figs .  
2-5  (c = 0.155, ci = 2.5, k = 1.02, kuv = 0.42) (the solid curve  is calculated) .  The value of the coeff icient  k 
was de te rmined  f rom a compar i son  of the exper imenta l  [8] and calculated prof i les  of the average  veloci ty .  
The scale  dis tr ibut ion taken f rom [5] (V . / U  0 = 0.037) is shown by c i r c l e s  in Fig. 2. In Figs .  3-5 the 
c i r c l e s  r e p r e s e n t  Lau fe r ' s  data [8], V . / U  0 = 0.035. 

It is seen f rom the graphs  that  such an approach can be used to de te rmine  the pr inc ipa l  and pu lsa -  
tion c h a r a c t e r i s t i c s  of s t r e a m s  in those regions where the turbulence is in a state of s t ruc tu ra l  equi l ibr ium.  
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